Lighting Research Center
LRC Intranet Web mail Lighting Research Center

Press Release


Back To Newsroom

News from the Lighting Research Center
                             Rensselaer Polytechnic Institute

Contact:   Rebekah Mullaney
Lighting Research Center
  Newsroom Home
  Project Posters
  In the News
  About Us
  Contact Us
Troy, N.Y. -  10/18/2005

Framework Developed for Testing How Lighting Can Affect Human Health

New scientific model will be featured in Brain Research Reviews

Scientists at the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute have taken a significant step forward in understanding how light affects the human body. The scientists developed a model that postulates the mechanisms by which humans process light for the circadian system, the body's system that regulates rhythms such as body temperature, hormone production, alertness, and sleep patterns. The research will be featured in Brain Research Reviews.

The "circadian phototransduction" model offers a framework for testing and exploring the practical aspects of architectural lighting and how it can affect human health. "The model is important in two ways," said Dr. Mark Rea, director of the LRC and lead researcher on the project. "It is theoretically important for generating hypotheses about neural mechanisms; and it is practically important for predicting the relative effectiveness of different light sources for impacting the human circadian system."

Rea says the model can be used as the foundation for a new system of circadian photometry, the study of how light affects the circadian system, much like the current system of photometry based on human vision. Quantification of light as a stimulus for the circadian system has profound implications for exploring how lighting can be used to adjust our bodies' internal clocks. "The model takes into account the high sensitivity of the human circadian system to short-wavelength (blue) light," explained Rea. "But it also considers evidence for a phenomenon known as spectral opponency. When middle-wavelength (yellow) light is added to short-wavelength light, the resulting white light is actually less effective at regulating the circadian system."

According to LRC researchers, the model is based on recently published evidence from electrophysiology and neuroanatomy. It incorporates newly-discovered retinal neurons that respond directly to light exposure called intrinsically-photosensitive retinal ganglion cells, or ipRGCs, as well as traditional photoreceptors (rods and cones).

LRC scientists plan to extend and refine the circadian phototransduction model, as well as bridge the findings to practical applications.

The research is summarized in a paper titled, "A model of phototransduction by the human circadian system," available in the Brain Research Reviews journal online and will be published in an upcoming print edition of the journal.

About the Lighting Research Center
The Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is the world's leading center for lighting research and education. Established in 1988 by the New York State Energy Research and Development Authority (NYSERDA), the LRC conducts research in solid-state lighting, light and health, transportation lighting and safety, energy efficiency, and plant pathology. LRC lighting scientists with multidisciplinary expertise in research, technology, design, and human factors, collaborate with a global network of leading manufacturers and government agencies, developing innovative lighting solutions for projects that range from the Boeing 787 Dreamliner to U.S. Navy submarines to hospital neonatal intensive-care units. In 1990, the LRC became the first university research center to offer graduate degrees in lighting and today, offers a M.S. in lighting and a Ph.D. to educate future leaders in lighting. With 35 full-time faculty and staff, 15 graduate students, and a 30,000 sq. ft. laboratory space, the LRC is the largest university-based lighting research and education organization in the world.

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is America's first technological research university. The university offers bachelor's, master's, and doctoral degrees in engineering; the sciences; information technology and web sciences; architecture; management; and the arts, humanities, and social sciences. Rensselaer faculty advance research in a wide range of fields, with an emphasis on biotechnology, nanotechnology, computational science and engineering, data science, and the media arts and technology. The Institute has an established record of success in the transfer of technology from the laboratory to the marketplace, fulfilling its founding mission of applying science "to the common purposes of life."