
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A theoretical model for predicting
LED product lifetime based on solder
joint failure

Dinusha R. Thotagamuwa, Nadarajah  Narendran, Yi-wei
Liu, Xi  Mou

Dinusha R. Thotagamuwa, Nadarajah  Narendran, Yi-wei  Liu, Xi  Mou, "A
theoretical model for predicting LED product lifetime based on solder joint
failure," Proc. SPIE 10940, Light-Emitting Devices, Materials, and
Applications, 109401Q (1 April 2019); doi: 10.1117/12.2508001

Event: SPIE OPTO, 2019, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 05 Apr 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

A theoretical model for predicting LED product lifetime based on 
solder joint failure 

Dinusha R. Thotagamuwa*, Nadarajah Narendran, Yi-wei Liu, and Xi Mou 
Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union St., Troy, NY 12180, USA 

ABSTRACT 

LED A-lamps are used in many types of lighting fixtures; however, these lamps can experience different thermal 
environments and use patterns (on-off switching), resulting in system life that varies in different applications. A recent 
study showed that on-off switching negatively affects LED system lifetime, and solder joint failure was the main reason. 
The goal of this study was to investigate and identify a theoretical model that can be used to predict LED A-lamp failure, 
when the failure is mainly due to solder joint failure. Although several models for solder joint fatigue failure exist in the 
electronics industry, the Engelmaier model is the most commonly used in industry standards. The study presented here 
showed that the Engelmaier model with modified fatigue ductility exponents provided a better fit to the experimental 
lifetime data for LED A-lamps. This paper describes the Engelmaier model prediction method for LED A-lamp failure. 
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1. INTRODUCTION 
Replacement lamps using light-emitting diode (LED) technology are displacing their traditional counterparts and have 
been gaining market share very rapidly. Long service life, in the timeframe of 25,000 hours, is one of the claimed 
benefits for these lamps. Because LED A-lamps are used in many types of lighting fixtures, including table lamps and 
ceiling-mounted fixtures, consumers expect them to last the claimed number of hours in any application. Depending on 
the application, these LED lamps can experience different thermal environments and on-off switching patterns. 
Therefore, it is possible for LED system life to vary from one application environment to the next. The results from a 
recent study showed that the present industry test procedure for LED lighting system lifetime measurement and the 
rating method are flawed.[1] The present industry standard requires manufacturers to test only one component, namely 
the LED package as per the LM-80 standard[2] and project the lumen maintenance lifetime (L70) based on TM-21.[3] In 
applications, the lamps are turned on and off, but in the test procedure lamps are tested by burning the lamps 
continuously on for 6000 hours. Moreover, the current test procedure considers only one failure type, namely, lumen 
depreciation. 

The failures in LED lighting systems could be parametric or catastrophic. In parametric failure, light output gradually 
diminishes, and the failure criterion (L70) is defined as the time point at which lumen depreciation reaches 70% of the 
initial light output. Catastrophic failure is the complete cessation of light. In an earlier study we found that catastrophic 
failure is the dominant failure mechanism in commercial LED A-lamps.[1] The results of that study showed that, contrary 
to common belief, on-off switching negatively affects lifetime, and solder joint failure was the main reason.  

The solder joint provides both mechanical and electrical connections between the LED package and the printed circuit 
board (PCB). Currently, most solder joints are Pb free and they contain Sn, Ag, and Cu alloys. The solder joint fatigue 
failure occurs as a result of the mismatch of the coefficient of thermal expansion (CTE) between the component and the 
substrate. On-off switching operation in an LED system induces cyclic thermal stresses on the solder joint due to the 
CTE mismatch between the LED package and the PCB. Consequently, smaller fatigue cracks are formed in the solder 
joint initially. During the operational life of the lamp, fatigue cracks grow and when they coalesce to make larger cracks, 
complete fracture could occur.[4] Many studies have shown that the fatigue life of surface mount solder joints can be 
characterized by the power law, where cyclic thermo-mechanical stress encourages the failure.[4,5] The goal of this study 
was to identify a model that can be used to predict LED A-lamp failure when solder joint failure is the main mechanism. 
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Table 3. Actual and predicted cycles to failure values for different test conditions 

Test condition Actual failure (cycles) Predicted failure (cycles) Prediction error (%) 

D80 2 hrs 3758 3758 0.0% 

D80 4 hrs 2031 2033 0.1% 

D90 2 hrs 1706 2097 22.9% 

D90 4 hrs 1636 1433 12.4% 

D100 2 hrs 1613 1613 0.0% 

D100 4 hrs 120 974 711.6% 

4. DISCUSSION 
The cycles to failure experiment results and the prediction with the Engelmaier model and modified coefficients specific 
to the LED A-lamp life testing study explained in this paper showed better agreement. The largest deviation between 
actual and predicted cycles to failure values was observed in the D100 4 hrs condition. The actual cycles to failure for 
this test condition was 120 cycles. It is stated by Engelmaier that if the predicted life is less than 1000 cycles, then such a 
severe stress condition could introduce additional failure modes and mechanisms.[4] The estimated fatigue ductility 
exponent ‘c’ values in this experiment were in the range -0.5055 to -0.7253. It has been shown in past literature that c 
values for common engineering metals are in the range of -0.5 to -0.7.[4] The estimated c value for the D100 4 hrs 
condition is -0.7253, which is outside the above range. This could be an indication that additional failure mechanisms 
could have accelerated the failure in the D100 4 hrs condition. 
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