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ABSTRACT Photopolymer 3D printing of optically clear resins is a promising technology for producing custom optical elements for general illumination. However, the transparency of the final 3D-printed part may depend on secondary processes. Residual photoinitiator can result in a yellowish tint that can be photobleached after exposure of the 3D-printed part to a light source. The study was designed to understand the tradeoff between the spectral characteristics of the light source used for the photobleaching and the irradiance to which test samples were exposed on the rate of photobleaching. A total of 14 samples were tested at room temperature for 120 minutes under a combination of three light sources (xenon, phosphor converted white LED, and direct emission blue LED), and up to five irradiance levels for each source in the range 0.0025 to 0.2238 W/cm2. The results showed that for the white LED, irradiance can increase the magnitude of the photobleaching. In this study, the maximum chromaticity shift was equivalent to a 4-step MacAdam ellipse. These results seem to indicate that it is possible to expedite photobleaching by increasing the irradiance, although more testing is necessary to find an optimum value. The results for the blue LED tests (peak wavelength 450 nm) showed that this spectrum can be as effective or slightly better at photobleaching than the white LED tested for the same total irradiance. The samples exposed to the xenon light source resulted in increased yellowish tint, presumably because of additional oxidation on the surface of the sample. For these samples irradiated with the xenon lamp, the tint increased with increasing irradiance.   
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1. INTRODUCTION Because of their relatively small size and the possibility to create arrays of distributed light sources, LEDs offer more flexibility for optical control with higher optical efficiency.[1] In turn, this means that lighting products can be designed with innovative optical designs for creating visually effective and energy-efficient lighting applications.[2] However, similar to other industries, two of the main challenges to achieve the benefits of custom optical designs have been the high cost of tooling and the long lead times to market.[3] 3D-printed custom optical elements hold great potential to alleviate these roadblocks. Additionally, 3D-printed lighting components can benefit local and domestic economies. Specifically, the US Department of Energy identified custom optics as one of the opportunities for 3D printing to increase domestic production of solid-state lighting.[4]  While there are challenges for mass producing optical elements comparable to traditionally manufactured optics, 3D printing of complex optic elements, including reflective and freeform transmissive optics, has been demonstrated.[5]-[8] Some of the challenges include careful consideration with respect to material properties that determine the optical quality, including transparency, homogeneity, and surface finish.[9]                                                                    1 Corresponding author: N. Narendran E-mail: narenn2@rpi.edu; Telephone: +1 (518) 276-7100; Website: https://www.lrc.rpi.edu/programs/solidstate/ 
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Photopolymer 3D printing of optically clear resins is a promising technology for producing custom optical elements for general illumination.[7],[8] However, the transparency of the printed parts may depend on post-processing to achieve optimum results. For example, parts produced by a multi-jet modeling (MJM) process using a photopolymer resin commonly used to simulate polymethyl methacrylate consistently have a yellowish tint immediately after being 3D-printed, due in part to residual photoinitiator from the photopolymerization process.[9] An example is shown in Figure 1. The yellowish tint is undesirable for general illumination applications where white light produced by the LED light source is expected to remain unchanged by secondary optical elements. Although unaided photobleaching occurs under ambient conditions, preliminary testing at light levels common from office lighting (~300 lx, triphosphor fluorescent lamps) showed that it can take several hundreds of hours to reach maximum photobleaching (unpublished results). Because a long waiting time is counterproductive to producing parts on demand, this study was designed to understand the effect of the spectrum and the irradiance to which 3D-printed parts are exposed on the rate of photobleaching. The overarching goal is to determine if photobleaching can be expedited and if the final clarity of printed parts can be maximized by controlling these two photometric characteristics.   

 Figure 1. Examples of 3D-printed test samples before and after photobleaching. In the picture, the three samples in the top row have gone through complete photobleaching, whereas the two samples in the bottom row appear tinted immediately after being printed.   
2. METHODOLOGY The study was designed to better understand the effect of the spectrum and the irradiance to which 3D-printed parts are exposed on the rate and magnitude of photobleaching. Test samples were 3D-printed using a transparent resin in a multi-jet modeling (MJM) 3D printer and exposed to three spectra and up to five irradiance levels, at room temperature (73°F ±2°F). The change in the inline total hemispherical spectral transmittance of the test samples was used as a measure of the magnitude of photobleaching achieved for each combination of light source spectrum and irradiance value. For each sample, the spectral transmittance was used to estimate the 1931 CIE xy chromaticity before and after exposure to each test condition. The magnitude of the shift in CIE xy chromaticity was evaluated in terms of MacAdam ellipse steps for ease of comparison.   

2.1 Light sources and irradiance levels The light sources used in the study included a xenon lamp, which produces a broadband spectrum including UV and IR radiation; a 5000 K phosphor-converted white LED, which also produces a broadband spectrum with minimal gaps in the short-wavelength region; and a direct emission blue LED with a 450 nm peak wavelength. Each of the three light sources were controlled to produce irradiance levels from 0.0025 W/cm² to 0.2238 W/cm². The range of test irradiance values was chosen to be close to what the secondary optics of an LED system would be exposed to as reported in the literature.[11] A single sample was tested for each combination of spectrum and irradiance. The exposure time was 120 minutes. Table 1 lists the irradiance test conditions used in this study, and Figure 2 shows the relative spectral power distribution of each source.   
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For the white LED light source, the experimental results showed that irradiance can increase the magnitude of the photobleaching when the exposure time is kept constant, in this experiment for 120 minutes. In this study, the maximum chromaticity shift was equivalent to a 4-step MacAdam ellipse, which is consistent with previous experience in our lab (unpublished results). In those previous experiments, the irradiance was lower and the exposure time was several hundreds of hours, but the magnitude of the shift became asymptotic, approximating a 4-step MacAdam ellipse. This seems to indicate that it is possible to expedite the photobleaching of 3D-printed parts by increasing the irradiance. More experimentation is needed to find an optimum irradiance value. Although the range of irradiance values with the blue LED light source was limited to the lower end of the range tested, the results showed that a narrowband spectrum (e.g., peak wavelength of 450 nm) can achieve similar or slightly better photobleaching than a white LED for the same total irradiance (see Figure 9). This may not be surprising since the main photobleaching effect is determined by the absorption of the remaining photoinitiator in the 3D-printed part. Since photoinitiators are designed to operate in the short-wavelength range used to cure printed parts, a similar spectrum to complete the photobleaching of the part would be the most effective. In this study, it was not possible to measure the magnitude of photobleaching with the xenon lamp because of the increase in tint. Although this tint is suspected to be oxidation on the surface, the tint increased with increasing irradiance. Further experimentation is required to determine if the oxidation is caused by the UV or IR in the spectrum of the xenon light source. For similar irradiance values, the blue and white LED sources produced photobleaching.  
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