Strategies in Light.

How long will it last?

Predicting LED system life based on the application

N. Narendran, Ph.D.

Lighting Research Center

Rensselaer Polytechnic Institute, Troy, NY 12180

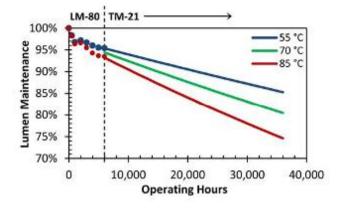
Introduction

- How long does an LED lamp last?
 - Common claims: 5 to 25 years, based on 3 hours per day use
- Why lamp life?
 - Payback analysis
- Does frequent on/off switching of LED bulbs shorten their life?
 - Common claim:
 - The operating life of an LED is unaffected by turning it on and off, while lifetime is reduced for fluorescent lamps.



User expectation

- Users may assume the LED lamp will last 22 years as stated in the label, in any application.
- However, they may find the product failing much faster in some applications than the life values claimed on the label.



How is LED bulb life measured?

- Industry practice:
 - Determining L₇₀ (lumen maintenance)
 - Continuous testing for at least 6000 (hrs)
 - Data extrapolation
 - IESNA LM80 / TM21
 - LED bulb life is estimated
 - Estimate Tj of the LED within the bulb during operation
 - Determine the L₇₀ value at that Tj

What is the problem?

LED Lighting System

- The problem with product lifetime rating method
 - Tests only one component
 - Considers only one failure type
 - Continuous-on testing
- An LED system has many components
 - Failure of any one component can cause system failure
 - Failure can be catastrophic or parametric
 - In practice products are turned on and off
- Therefore, the claimed lifetime numbers may not represent what consumers experience.

Study Objective

- The study objective was to develop a short duration test method that can predict LED system life in an application.
 - Environment temperature
 - Resulting Tj of LED
 - ON-OFF switching pattern
- and
 - Considers both catastrophic and parametric failure times

Background

 Since 2009, LRC's researchers have been investigating LED system life testing under ASSIST program sponsorship

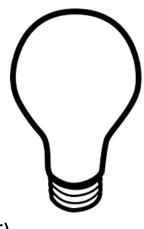
References:

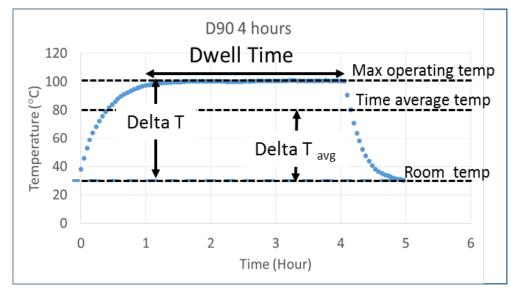
- Accelerated Life-testing Study to Predict LED System Failure, Strategies in Light 2014, Feb 25-27, Santa Clara, CA.
- Narendran, N., and Y. Liu. 2015. LED life versus LED system life. In: SID '15 Digest of Technical Papers, paper 62-2, SID Display Week 2015: International Symposium, Seminar and Exhibition, May 31-June 5, 2015, San Jose, CA.
- Narendran, N., Y. Liu, X. Mou, D.R. Thotagamuwa, and O.V. Madihe Eshwarage. 2016. Projecting LED product life based on application. Proceedings of SPIE 9954, Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems, 99540G (September 14, 2016).
- To accurately capture system failure and estimate life:
 - The whole lighting system must be tested
 - The test procedure must include ON-OFF switching
 - All failure types must be considered
 - Catastrophic and Parametric

Experiment

- Step 1: Determining LED Tj in application
 - LED A-lamp, 75W incandescent equivalent, in a 3-lamp surface mount fixture
 - T_i of LEDs = 146°C
 - T _{room} = 30°C
 - When swiched on and off
 - Delta Temperature = 116°C

LED lamp used in the study: 75W Equivalent Dimmable Warm White A19 LED Light Fixture Light Bulb





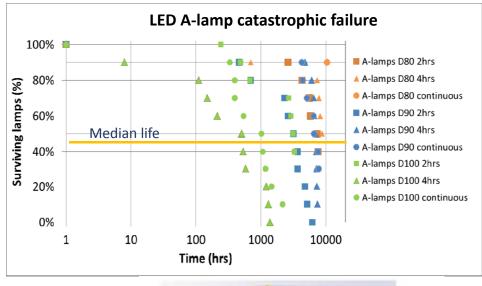
Experiment setup and test procedure

- Type of product
 - LED A-lamp
 - 30 samples each
- Test variables
 - Delta Temperature (DT)
 - D80/D90/D100 °C
 - Dwell Time
 - 2-hrs/4-hrs/Continuous

Test Setup

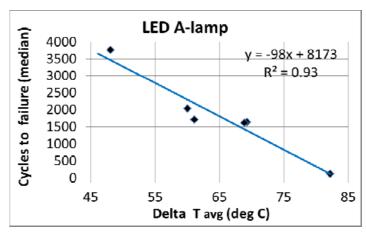
Energy Star Rated Products (270 samples)

A-lamps MR16 lamps **Downlights**



Data: LED A-lamp catastrophic failures

- Catastrophic failure:
 - Median life depends on DT and dwell time
- Failure modes
 - LED failure = 84%
 - PCB solder failure
 - Driver failure = 16%



Data: LED A-lamp catastrophic failures

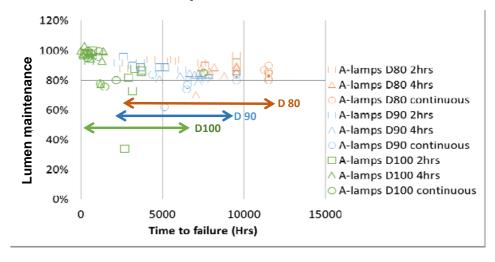
- Higher Delta T results in shorter time to failure
- Shorter dwell time results in shorter time to failure
 - Frequent switching shortens life
- Cycles to failure (median life) and delta temperature are related linearly (inverse)

Delta T avg (°C)

Delta T/Dwell Conditions	2 hrs	4 hrs
80°C	48	60
90 °C	61	69
100°C	69	82

Time to failure (median life in hours)

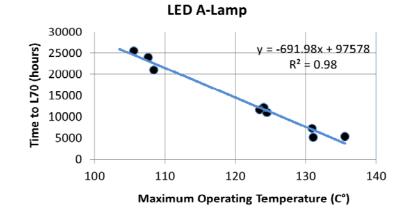
Delta T/Dwell			
Conditions	2 hrs	4 hrs	
80°C	7,516	8,801	
90°C	3,411	7,091	
100°C	3,225	521	



Data: LED A-lamp lumen depreciation

- Majority of the tested LED A-lamps failed catastrophically before lumen maintenance reached the 70% value.
 - That is the reason why catastrophic failure must be considered as well

Lumen depreciation at failure



Results: A-lamp lumen depreciation

For the product tested:

- L70 and maximum operating temperature have linear relationship
- The projected L70 values are similar for each DT condition
 - Cycling minimum effect

Maximum operating temperature (°C)

Time to failure (L₇₀ in hours)

Delta							
Temp/Dwell			Continuous	Delta T/Dwell			Continuous
Conditions	2 hrs	4 hrs	on	Conditions	2 hrs	4 hrs	on
80°C	106	108	108	80°C	25,528	20,998	23,979
90°C	125	124	124	90°C	11,019	12,185	11,657
100°C	131	136	131	100°C	7,289	5,308	5,171

Life of an LED lighting system

 Based on current industry standards, the lamp life claim (L70) of 25,000 hours is reasonable.

50000 ighting Facts Per Bull v = -691.98x + 97578to L70 (hours) 40000 nated Yearly Energy Cost 30000 20000 Time ight Appearance 10000 90 100 110 120

• Question: Will the consumer see the lamp operate for the claimed hours?

Maximum Operating Temperature (C°)

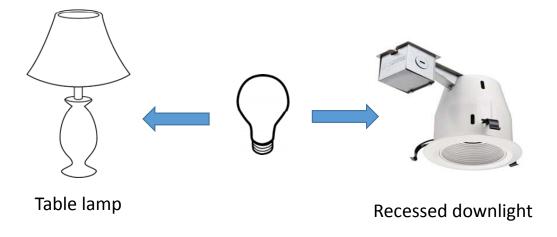
LED A-Lamp

 $R^2 = 0.98$

140

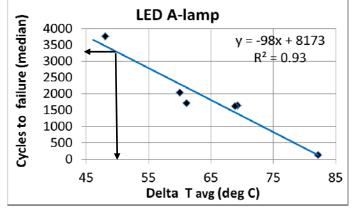
Life of an LED lighting system

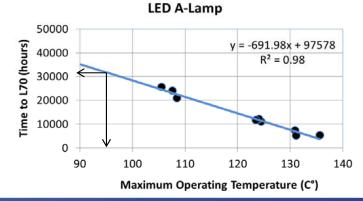
- Study results show for the LED A-lamps tested both failure types exist
 - Catastrophic (Cease to produce light)
 - Parametric (Lumen depreciation)
- Shorter of the two times to failure determines the system lifetime



Predicting lifetime in applications

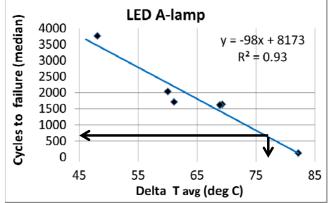
- To illustrate the usefulness of the method
- Two sample applications where the same lamp can be used were selected to estimate lamp life

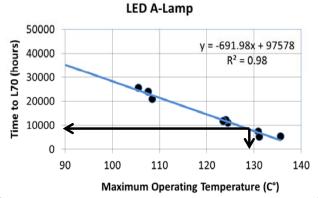



LED A-lamp life estimation in an application

- Example 1: LED Table lamp
 - Used 3 hours per day, 1 cycle
 - Maximum Tj = 95°C at T_{room} 30°C
 - Delta T _{avg} = Tavg T _{room} = 50°C
 - Estimated median lamp life
 - Catastrophic: 3250 cycles = 8.9 yrs
 - L70: 32,000 hrs = 29 yrs

Lamp life = 8.9 years; 9746 hours




LED A-lamp life estimation in an application

- Example 2: Downlight (Non-IC)
- Used 2 hours per day; 1 cycle.
 - Maximum Tj = 129°C at Troom 30°C
 - Delta Tavg = 77°C
 - ~ 600 days = ~ 1.9 years
 - Estimated median lamp life
 - Catastrophic: 700 cycles = 1.9 yrs
 - L70: 9,000 hrs = 12.3 yrs

Lamp life = 1.9 years; 1387 hours

Summary

Reference: Narendran, N., Y. Liu, X. Mou, D.R. Thotagamuwa, and O.V. Madihe Eshwarage. 2016. Projecting LED product life based on application. Proceedings of SPIE 9954, Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems, 99540G (September 14, 2016);

- For the LED A-lamps tested, failure includes both catastrophic and parametric.
 - Switching LED systems ON and OFF can shorten lamp life.
 - Therefore, the LED system life test procedure must include ON-OFF switching.
- Higher percentage (84%) of lamp failures was catastrophic and was due to solder joint failure. The balance (16%) was due to driver failure.
- Cycles to failure has a high correlation to delta time-averaged temperature.
- Time to L70 (parametric failure) has a high correlation to maximum operating temperature.
- The proposed test method
 - Can predict LED system life in application
 - If Tj and switching pattern (ON-OFF cycling) are known.

Lessons learned

- Contrary to common belief
 - Switching LED systems ON and OFF can shorten lamp life similar to other traditional light sources
- Current industry practice for testing LED lighting products and rating lifetime needs revision

LED product Life testing method:

- Whole system must be tested
- Must include On-Off switching
- Must consider catastrophic and parametric failures
 - Use the shorter time to failure
 - Parametric shift must include light output and power demand over time

Acknowledgments

- Financial support for this study
 - Bonneville Power Administration (Technology Innovation Project # 322)
 - New York State Energy Research & Development Authority (contract # 46905)
 - ASSIST

The project was supported by above mentioned organizations and that such support does not constitute an endorsement by these organizations of the views expressed therein.

- Project Team:
 - Yi-wei Liu, Xi Mou, Dinusha R. Thotagamuwa
- Rensselaer's Lighting Research Center staff:
 - Jennifer Taylor, Martin Overington, Jean Paul Freyssinier, Indika Perera, Howard Ohlhous, Dexter Taylor, Oshadhi V. Madihe Eshwarage, Antonio Capó, and Abhinay Sandupatla for their valuable contributions to the project.

ASSIST Program Sponsors

Strategies in Light.

Thank you

www.lrc.rpi.edu/programs/solidstate/index.asp

