

An accelerated test method for estimating LED system life

N. Narendran and Yi-wei Liu
Lighting Research Center
Rensselaer Polytechnic Institute
Troy, NY 12180

14th International Symposium on the Science and Technology of Lighting June 22-27, Como - Italy

- Why LED system life?
 - How often to change the light bulb
 - Life cycle cost analysis
- Users buying a lighting system expects it to perform and last the same in all applications

- LED system life
 - Presently, LED lighting product life is rated based on LED lumen maintenance (LM80/TM21)

- A lighting system has many components
 - Failure of any component can cause system failure
- Therefore, whole system has be tested to obtain reasonable life estimate

- IESNA LM84-14 standard:
 - First attempt towards developing a system life test method
 - Test method is based on continuous operation.
- In applications the lighting systems are turned on and off
 - O Typical use pattern:
 - A Office: 12 hrs on, 12 hrs off
 - B Home: 4 hrs on, 4 hrs off

A

B

- community.lighting.philips.com/
 www.ledsource.com/products/res
- www.ledsource.com/products/r idential

- Power cycling can cause component/system failure.
 - o LRC study (2013 2014)
 - COB LEDs
 - Testing conditions:
 - 700 mA; Tj = 150°C; Continuous vs. cycling (4 hours on, 2 hours off)

o Results:

Catastrophic failures were only discovered in cycling test

Product No.	Catastrophic failure (cycling test)
А	4 out of 5
С	4 out of 5

- The electronic industry has several rapid cycle test methods for failure testing
 - o Example:
 - IEC 60068-2-14
 - Strife
- Some manufacturers have adopted similar methods for LED reliability testing
 - o Test for 1000 cycles
 - Usually a pass/fail test (helps to identify early failures)

IEC 60068-2-14: Test the ability to withstand rapid changes of ambient temperature."

STRIFE method is the most destructive among test method.

Study Objective

- None of the test procedures presently available are designed to project system life based on the environment temperature and the use pattern (on-off)
- Objective To develop an accelerated test method that can predict failure of LED system based on factors such as
 - Environment temperature (Tpin)
 - o On-off cycling.

Initial studies

- To determine Tpin of the LED lamp when placed inside a luminaire
 - 40W replacement lamps
 - Max T pin = 98°C; Delta T = 75°C
 - 60W replacement lamps
 - Max T pin = 118°C; Delta T = 95°C
 - Tj ~ 20 C higher than Tpin
- LRC preliminary studies identified the following acceleration parameters:
 - ΔT, Max. Tj, Ramp rate, Dwell time

Failure Testing

- Some standards have very fast cycling of LED products to test for failures.
 - Very small delta T
 - May not cause damage

- o Parametric
 - Lumen depreciation or color shift
- o Catastrophic
 - Ceases to produce light

STUDY 1

Study 1

- Objective: To understand failure modes and the their relationship to test parameters:
 - o Delta T (70, 95 C);
 - Dwell time = 1 to 9 hrs
- Over 14,000 hours of test time
- Results:
 - Cycling without dwell time did not show any degradation or failure
 - O Delta 70, no failure
 - catastrophic or lumen depreciation
 - Delta 95, no catastrophic failure but lumen depreciation

System tested
G25 LED lamp
(40W incandescent replacement)

Results: Delta 95°C study

Light output pattern

Results: Delta 95°C study

- No catastrophic failures but lumen deprecation was observed
- Failure assumption:
 - o 70% light level
- Cycles to failure
 - Correlated well with
 - time averaged temperature

Multiple degradation mechanisms

*4 hours dwell sample

Analysis

Lumen depreciation was due to electrical and optical degradations

o 40% light loss due to electrical

13% light los due to optical

Driver

	New sample	D95 Aged sample	D95 aged sample with original current
Current (mA)	193	117	193
Light output	100%	47%	87%

Data Extrapolation

- Extrapolating the 6000 hr data can lead to erroneous results
 - Projected life = 25,000 hrs
 - Actual life = 8,000 hrs

Study 1 Summary

- For the selected product (40W incandescent G25 replacement)
 - Cycling without dwell time did not show any degradation or failure
 - Cycling with dwell time showed no catastrophic failure, but showed lumen depreciation due to multiple failure modes
 - Electrical / Optical (Electrical degradation much greater than optical)
 - Cycles to failure correlated well with time-averaged T
 - Need to be careful when extrapolating system data
 - multiple degradation mechanisms

STUDY 2

Study 2

- Objective: To understand the effect of different delta temperate and dwell times on failure time
 - Lamp used: A 60W equivalent LED lamp

ΔΤ	60°C	70°C	80°C	90°C
----	------	------	------	------

Study 2 Results

- For the system tested
 - Delta temperature increase results in shorter TTF
 - o Catastrophic failure
 - Dwell time increase
 - Results in longer time to failure at delta T 95 C
 - Data is still being collected at other delta T temperature

Results

- For the system tested, time to failure has a good correlation with time averaged temperature
 - Dominant failure mode: Solder joint failure

Study 2 - Summary

- Failure acceleration to predict system life
 - Higher Delta T, shorter time to failure
 - Dwell time also influences time to failure
 - Too early to comment on what the effect is
- For the system tested, time to failure has a good correlation with time averaged temperature

Final Remarks

- Failures can be parametric (lumen depreciation) or catastrophic (complete failure)
- Life testing of LED systems must include on-off cycling
 - Very fast cycling may not show failure
 - Not a suitable test for stressing system
- Over accelerated life testing may result in additional failure modes
- In an LED system lumen depreciation can be due to several factors (Electrical and optical)
 - Simple function extrapolation for systems may lead to erroneous results
- Failure acceleration using delta T and dwell time is showing promise in predicting the failure of LED systems under different operating conditions
 - o Time average temperature correlates well with time to failure
 - However, more products need to be tested to validate test procedure

Acknowledgements

- LS 14 Organizers
- ASSIST program sponsors

THANK YOU

