

9th SSL Annex Expert Meeting Portland, OR

An accelerated test method for estimating LED system life

N. Narendran, PhD Professor, Director of Research Lighting Research Center Rensselaer Polytechnic Institute October 2014

narenn2@rpi.edu

- Why LED system life?
 - > How often to change the light bulb
 - > Life cycle cost analysis
- Users buying a lighting system expects it to perform and last the same in all applications

LED system life

- Presently, LED lighting product life is rated based on LED lumen maintenance (LM80/TM21)
- A lighting system has many components
 - Failure of any component can cause system failure
- Therefore, whole system has be tested to obtain reasonable life estimate

Lighting Research Center

IESNA LM84-14 standard:

- First attempt towards developing a system life test method
- > Test method is based on continuous operation.
- In applications the lighting systems are turned on and off
 - > Typical use pattern:
 - A Office: 12 hrs on, 12 hrs off
 - B Home: 4 hrs on, 4 hrs off

 community.lighting.philips.com/
www.ledsource.com/products/resi dential

 $\ensuremath{\textcircled{C}}$ 2014 Rensselaer Polytechnic Institute. All rights reserved.

- Power cycling can cause component/system failure
 - > Dynamic stress
 - > LRC study (2013 2014)
 COB LEDs
 - > Testing conditions:
 - 700 mA; Tj = 150°C; Continuous vs. cycling (4 hours on, 2 hours off)
 - > Results:
 - Catastrophic failures were only discovered in cycling test

© 2014 Rensselaer Polytechnic Institute. All rights reserved.

- The electronic industry has several rapid cycle test methods for failure testing
 - > Example:
 - IEC 60068-2-14
 - Strife
- Some manufacturers have adopted similar methods for LED reliability testing
 - > Test for 1000 cycles
 - Usually a pass/fail test (helps to identify early failures)

IEC 60068-2-14 Method

IEC 60068-2-14 : Test the ability to withstand rapid changes of ambient temperature."

STRIFE method is the most destructive among test method.

Study Objective

- None of the test procedures presently available are designed to project system life based on the environment temperature and the use pattern (onoff)
- Objective To develop an accelerated test method that can predict failure of LED system based on factors such as
 - > Environment temperature (Tpin)
 - > On-off cycling.

Initial studies

- To determine Tpin of the LED lamp when placed inside a luminaire
 - 40W replacement lamps
 - Max T pin = 98°C; Delta T = 75° C
 - 60W replacement lamps
 - Max T pin = 118°C; Delta T = 95°C
 - Tj ~ 20 C higher than Tpin
- LRC preliminary studies identified the following acceleration parameters:
 ΔT, Max. Tj, Ramp rate, Dwell time

Lighting Research Center

Failure Testing

- Some standards have very fast cycling of LED products to test for failures.
 - > Very small delta T
 - > May not cause damage
- Generally there are two types of failures:
 - > Parametric
 - Lumen depreciation or color shift
 - > Catastrophic
 - Ceases to produce light

STUDY 1

Study 1

- **Objective:** To understand failure modes and the their relationship to test parameters:
 - > Delta T (70, 95 C);
 - > Dwell time = 1 to 9 hrs

Over 14,000 hours of test time

Results:

- Cycling without dwell time did not show any degradation or failure
- > Delta 70, no failure
 - catastrophic or lumen depreciation
- Delta 95, no catastrophic failure but lumen depreciation

System tested G25 LED lamp (40W incandescent replacement)

© 2014 Rensselaer Polytechnic Institute. All rights reserved.

Results: Delta 95°C study

Light output pattern

Lighting Research Center

© 2014 Rensselaer Polytechnic Institute. All rights reserved.

Results: Delta 95°C study

- No catastrophic failures but lumen deprecation was observed
- Failure assumption:
 - > 70% light level
- Cycles to failure

ighting

Research Center

- Correlated well with >
 - time averaged temperature

Multiple degradation mechanisms

80

Time averaged temperature (deg. C)

90

© 2014 Rensselaer Polytechnic Institute. All rights reserved.

500

70

Rensselaer

100

Analysis

Lumen depreciation was due to electrical and optical degradations

- > 40% light loss due to electrical
- > 13% light los due to optical

	New sample	D95 Aged sample	D95 aged sample with original current
Current (mA)	193	117	193
Light output	100%	47%	87%

Data Extrapolation

 Extrapolating the 6000 hr data can lead to erroneous results

- > Projected life = 25,000 hrs
- > Actual life = 8,000 hrs

Lighting Research Center

Study 1 Summary

For the selected product (40W incandescent G25 replacement)

- Cycling without dwell time did not show any degradation or failure
- Cycling with dwell time showed no catastrophic failure, but showed lumen depreciation due to multiple failure modes
 - Electrical / Optical (Electrical degradation much greater than optical)
- > Cycles to failure correlated well with time-averaged T
- > Need to be careful when extrapolating system data
 - multiple degradation mechanisms

STUDY 2

Study 2

 Objective: To understand the effect of different delta temperate and dwell times on failure time

70°C

Lamp used: A 60W
equivalent LED lamp

60°C

ΔΤ

© 2014 Rensselaer Polytechnic Institute. All rights reserved.

80°C

90°C

Study 2 Results

For the system tested

- > Delta temperature increase results in shorter TTF
 - Catastrophic failure
- > Dwell time increase
 - Results in longer time to failure at delta T 95 C
 - Data is still heing collected at other delta T temperature

Lighting Research Center

Results

- For the system tested, time to failure laboration with time averaged temper
 - > Dominant failure mode: Solder joint failure

Lighting Research Center

© 2014 Rensselaer Polytechnic Institute. All rights reserved.

Study 2 - Summary

Failure acceleration to predict system life
> Higher Delta T, shorter time to failure
> Dwell time also influences time to failure

 For the system tested, time to failure has a good correlation with time averaged temperature

Final Remarks

- Failures can be parametric (lumen depreciation) or catastrophic (complete failure)
- Life testing of LED systems must include on-off cycling
 - Very fast cycling may not show failure
 - Not a suitable test for stressing system
- Over accelerated life testing may result in additional failure modes
- In an LED system lumen depreciation can be due to several factors (Electrical and optical)
 - > Simple function extrapolation for systems may lead to erroneous results
- Failure acceleration using delta T and dwell time is showing promise in predicting the failure of LED systems under different operating conditions
 - > Time average temperature correlates well with time to failure
 - > However, more products need to be tested to validate test procedure

Acknowledgements

- Organizers of 9th SSL Annex Expert Meeting
- ASSIST program sponsors
- Lighting Research Center Staff
 - > Yi Wei Liu
 - > Martin Overington
 - > Yiting Zhu
 - > Howard Ohlhous
 - > Antonio Capo
 - > Jenny Taylor

