Introduction to Flicker Concepts and Effects

John D. Bullough, Ph.D.
Lighting Research Center, Rensselaer Polytechnic Institute

ENERGY STAR® Flicker Testing Tutorial
September 22, 2017
Introduction

- Visual sensitivity to flicker can be characterized in two ways:
 - **Direct** perception of light modulation
 - **Indirect** perception of stroboscopic effects (phantom array, wagon-wheel effect)

- Characteristics of flicker that might influence perception include:
 - Frequency
 - Modulation depth
 - Duty cycle
 - Waveform shape
Flicker Terminology

120 Hz, 100% flicker, 50% duty

50 Hz, 100% flicker, 50% duty

120 Hz, 33% flicker, 100% duty

120 Hz, 100% flicker, 10% duty

Frequency (cycles per second)
Flicker Terminology

Modulation amount (Percent flicker: \([\text{max-min}]/[\text{max+min}]\))
Flicker Terminology

Modulation amount (Flicker index: area above average/total area)

- **120 Hz, 100% flicker, 50% duty**: flicker index: 0.5

- **50 Hz, 100% flicker, 50% duty**

- **120 Hz, 33% flicker, 100% duty**: flicker index: 0.9

- **120 Hz, 100%, 10% duty**
Flicker Terminology

Duty cycle (% of time light output > 10% of max)

120 Hz, 100% flicker, 50% duty

50 Hz, 100% flicker, 50% duty

120 Hz, 33% flicker, 100% duty

120 Hz, 100% flicker, 10% duty
Flicker Terminology

Waveform shape (rectangular vs. sinusoidal)

- 120 Hz, 100% flicker, 50% duty
- 120 Hz, 100% flicker, 60% duty
Initial Study: Lighting Conditions Tested

<table>
<thead>
<tr>
<th>Condition</th>
<th>Flicker Frequency (Hz)</th>
<th>Percent Flicker (%)</th>
<th>Flicker Index</th>
<th>Duty Cycle (%)*</th>
<th>Waveform</th>
<th>Correlated Colour Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>100%</td>
<td>0.50</td>
<td>50%</td>
<td>Rectangular</td>
<td>4000</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>100%</td>
<td>0.50</td>
<td>50%</td>
<td>Rectangular</td>
<td>4000</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>100%</td>
<td>0.50</td>
<td>50%</td>
<td>Rectangular</td>
<td>4000</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>100%</td>
<td>0.50</td>
<td>50%</td>
<td>Rectangular</td>
<td>4000</td>
</tr>
<tr>
<td>5</td>
<td>300</td>
<td>100%</td>
<td>0.50</td>
<td>50%</td>
<td>Rectangular</td>
<td>4000</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>100%</td>
<td>0.90</td>
<td>10%</td>
<td>Rectangular</td>
<td>4000</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>33%</td>
<td>0.17</td>
<td>50%</td>
<td>Rectangular</td>
<td>4000</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>100%</td>
<td>0.41</td>
<td>60%</td>
<td>Chopped sinewave</td>
<td>6000</td>
</tr>
<tr>
<td>9</td>
<td>120</td>
<td>100%</td>
<td>0.90</td>
<td>10%</td>
<td>Rectangular</td>
<td>2700</td>
</tr>
</tbody>
</table>

*Percentage of time light output > 10% of maximum.

- **Frequency**: Conditions 1-5
- **Modulation amount**: Conditions 4, 7
- **Duty cycle**: Conditions 4, 6
- **Waveform shape**: Conditions 4, 8
- **CCT**: Conditions 6, 9
Results: Frequency

Q: Flicker while looking at the wall (p<0.05)

100% Flicker (0.5 Flicker Index)
50% Duty Cycle
Rectangular Waveform Shape
4000 K CCT

Q: Flicker while waving hand under luminaire (p<0.05)
Results: Modulation Amount

- 120 Hz Frequency
- 50% Duty Cycle (modulation only)
- Rectangular Waveform Shape
- 4000 K CCT

Q: Flicker while waving hand under luminaire (p<0.05)
Parametric Study:
 Detection/Acceptability of Stroboscopic Effects

Experimental Task: Waving a light-colored rod against a dark background

<table>
<thead>
<tr>
<th>Frequency → Percent flicker (flicker index) ↓</th>
<th>100 Hz</th>
<th>300 Hz</th>
<th>1000 Hz</th>
<th>3000 Hz</th>
<th>10000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% (0.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54% (0.27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25% (0.13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% (0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Did You See It?

Detection of Stroboscopic Effects

\[d = \frac{(25p + 140)}{(f + 25p + 140)} \times 100\% \]

\(d = \) detection, \(f = \) frequency in Hz, \(p = \) percent flicker = flicker index \(\times 200 \)
Results: Was it Acceptable?

Acceptability of Stroboscopic Effects

\[a = 2 - 4/[1 + f/(130 \log p - 73)] \]

(a=rating value, f=frequency in Hz, p=percent flicker=flicker index × 200)
Visual Performance Study

- Three flickering lighting conditions:
 - 100 Hz/100% flicker (0.5 flicker index):
 96% detection, -0.6 acceptability
 - 100 Hz/25% flicker (0.13 flicker index):
 88% detection, -0.1 acceptability
 - 1000 Hz/100% flicker (0.5 flicker index):
 73% detection, +1.4 acceptability

- Participants performed a low-contrast numerical verification task, identifying mismatched 5-digit numbers over 30 minutes

- Number of lines completed, number and rate of errors, and subjective comfort ratings were recorded

(Bullough et al. 2013)
Visual Performance Study: Results

Error Percentage (+/- SEM)

Lighting Condition

- 100 Hz/100% flicker
- 100 Hz/25% flicker
- 1000 Hz/100% flicker

* Indicates statistically significant difference.
Task-Dependent Response Study: Experimental Setup

- Horizontal illuminance on desktop: 300 lx
- Light-colored surfaces
- Flicker frequencies (always at 33% flicker, 0.17 flicker index):
 - 100, 200, 500, 1000 Hz
- Questions:
 - Stroboscopic effects detected while waving white rod?
 - Stroboscopic effects detected with metronome (208 bpm)?
 - Acceptability of any flicker from lighting?

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2</td>
<td>Very acceptable</td>
</tr>
<tr>
<td>+1</td>
<td>Somewhat acceptable</td>
</tr>
<tr>
<td>0</td>
<td>Neither acceptable</td>
</tr>
<tr>
<td></td>
<td>nor unacceptable</td>
</tr>
<tr>
<td>-1</td>
<td>Somewhat unacceptable</td>
</tr>
<tr>
<td>-2</td>
<td>Very unacceptable</td>
</tr>
</tbody>
</table>
Experimental Threshold Results

Thresholds for detection (50%) and for acceptability (rating=0) occurred at systematically lower frequencies with lower contrast and slower movement speed. In other words, sensitivity to stroboscopic effects was reduced under the tested conditions (e.g., lower contrast, slower movement) relative to those used to develop the predictions by Bullough et al. (2012)
Other (Non-Rectangular) Waveform Shapes

- Bullough and Marcus (2015) evaluated different waveform shapes and duty cycle (60%-90% or 100%) at 100, 120, 300 and 1000 Hz
- Responses to waving a light-colored rod against a dark background, and to a metronome operating at 208 bpm were assessed

[all waveforms above: 100% flicker]
Experimental Results

- Percent flicker and flicker index values cannot be compared across different frequencies; Perz et al. (2015) developed a stroboscopic visibility measure (SVM) based on Fourier analysis, which is independent of frequency properties.

- In their study of responses to 100-1000 Hz flicker varying in waveform shape and duty cycle (Bullough and Marcus 2015), detection and acceptability were rectified at least as well as SVM by a modified flicker index defined as:

 \[
 \text{Modified flicker index} = \frac{\text{Flicker index} \times 100}{f}, \text{ where } f \text{ is the frequency (Hz)}
 \]
Implications of Results

- Data from Bullough and Marcus (2015) have several implications for specifications to limit perception of stroboscopic effects:
 - Metrics based on flicker index (such as modified flicker index) are superior to those based on percent flicker, such as IEEE 1789 and California Title 24
 - For waveforms with more than one fundamental frequency component, modified flicker index is difficult to implement because no single frequency can be defined
Discussion

- Stroboscopic effects can be visible at frequencies of 1000 Hz or higher
 - High contrast and rapid movement maximize detection
- However, even when seen, stroboscopic effects are not necessarily unacceptable
- Metrics based on percent flicker and flicker index are limited to waveforms with a single dominant frequency
 - Fourier-based metrics would provide a more complete characterization of complex waveforms
Thank you!

- **Acknowledgments**
 - ASSIST program sponsors
 - US Environmental Protection Agency
 - LRC faculty, staff and students

Questions?

http://www.lrc.rpi.edu/programs/solidstate/assist/recommends/flicker.asp