SSL System Reliability Prediction Method

February 11, 2013

Projects August 2012-July 2013

	Funds allocated
Project A. Color rendering metrics	\$75,000
Project B. Secondary optics reliability and LED lens temp measurement	\$50,000
Project C. Color shift research, contribution from other components in the system	\$50,000
Project D. Expand dimming definition and add metric for dimmer compatibility (funds allocated here will include standards support for flicker as well)	\$35,000
Project E. Accelerated and improved photometric testing	\$50,000
Project F. SSL summer research internship	\$75,000
Project G. System reliability: expand current program to include vibration	\$40,000
Project H. Annotated bibliography of selected topics	\$0 [*]
ASSIST Operations (administration, website, meeting costs, etc.)	\$75,000
* Project H will be completed within the administrative budget for 2012-2013.	\$450,000

Study Objective

- To develop an accelerated test method that can predict the failure of LED luminaires under realistic operating conditions (catastrophic failure).
 - To predict lifetime based on factors such as:
 - application temperature, on-off cycling, and others if applicable.
- Similar to linear fluorescent lamp

Effect of burning cycles on average lamp life for fluorescent lamps

- F.J. Vorlander and E. H. Raddin, "The effect of operating cycles on fluorescent lamp performance," *Illuminating Eng.*, pp. 21-27, Jan. 1950.
- 2. "Fluorescents-on/off," Lighting Design Appl. vol. 3, pp. 38-39, Jan. 1973.
- L.A. Carriere. M.S. Rea "Economics of Switching Fluorescent Lamps," IEEE Trans. on Industry Applications Vol. 24, No. 3, May/June 1988, p. 370-379.

Background

- ENERGY STAR Program
 - Rapid-cycle stress test
 - 2 min ON / 2 min OFF
- 2009 LRC study:
 - Showed that 2 min ON / 2
 min OFF introduces only a
 small DT, and therefore the
 damage that leads to
 failure may be small.

Rapid-Cycle Cycle times must be 2 minutes on, 2 minutes off. Lamp will be cycled once for every two hours of L₇₀ life.

Lamp Type	ENERGY STAR Requirements	Methods of Measurement and/or Reference Documents	Supplemental Testing Guidance
All Lamps	Lamp shall survive cycling once for every hour of rated life (minimum of 10,000 cycles). Each cycle shall be 5 minutes on, 5 minutes off.	Measurement: IES LM-65-10 (clauses 2-3,5,6) ANSI C78.5-2003	For dimmable (2-way) 3-way products, measurements shall be made at the highest wattage setting listed for the model. Sample Size: 10 lamps per model: 5 units tested baseup and 5 units tested and 1 units about 5 units and 10 tested in restricted position. The sample shall be a unique sample for this test. Passing Test: 2 9 units shall survive the minimum number of cycles.

Background

- Real-life light fixture cycling pattern:
 - Office:
 - 6am to 6pm (12 hrs on, 12 hrs off)
 - Home:
 - 6am to 10am, 6pm to 10pm (4 hrs on, 4 hrs off)
- LRC pilot studies identified the following acceleration parameters:
 - ΔT, Max. Tj, Ramp rate, Dwell time

https://community.lighting.philips.com

http://www.ledsource.com/products/residential

Final study started October 2010

Pilot study

Objective

- To identify the pin temperature of the LEDs when the lamps are placed inside a surface-mounted luminaire
- Test set-up
 - 3 LED integral lamps in a surfacemounted fixture

Results:

- Max T pin = 98° C
- Min T pin = 23° C
- Delta T pin= 75°C

Study #1

- Selected system LED Integral lamp (G25)
- Test conditions:
 - Realistic
 - (12hrs on/6hrs off, 4hrs on/4hrs off)
 - Delta T
 - T max
 - Ramp rate
 - Dwell time

Results: Realistic Conditions

Status
As of Jan-24-2013, only 1 catastrophic failure

Test item	# of samples
4 hrs on-4 hrs off	10
12 hrs on- 6 hrs off	10

Min. T	25°C
Max. T	95°C
ΔΤ	70°C
Dwell time*	1 hr (4 hrs on); 9 hr (12 hrs on)
Ramp rate*	0.6°C/min

Results: Dwell Time

Status

As of Jan-24-2013

- $\Delta 70^{\circ}$ C group: 1 catastrophic failure / all others no failure or lumen depreciation
- $\Delta 95^{\circ}$ C group: 1 catastrophic failure / all others significant lumen depreciation

Conditions	# of test samples
Dwell time	10 * 2
(Profile 1, Profile 2)	

Thermal Condition	#1	#2	
Min. T	25°C	25°C	
Max. T	95° C	120°C	
ΔΤ	70°C	95°C	
Dwell time* hrs	0,1,2,3,4,5,6,7,8,9	0,1,2,3,4,5,6,7,8,9	
Ramp rate*	0.6°C/min	1.2°C/min	

Results: Delta 95°C – Dwell time study

Time-averaged temperature

- Failure should correspond to time-averaged temperature of the cycles
 - Higher time-averaged temperature at larger dwell times
 - Greater damage to the system components at higher temperatures

Results

Failure assumption: 70% light level

4 hours dwell

Time (days)

General depreciation pattern

Multiple degradation factors:

• Loss - 1 % every 18.8 / 1.9 / 7.5 days

Failure analysis

Measured Terminals

Lamp A	Series Resistance LED 1 (Ω)	Series Resistance LED 2 (Ω)	Equivalent resistance (Ω)	Current through LED package (mA)
New Lamp A	35.5	36.6	18.0	96
Lamp at delta 70°C	46.2	37.4	20.7	82
Lamp at delta 95°C	46.0	42.7	22.1	66

Package Series Resistance

- The LED package was disconnected from the driver of the integral lamp.
- The two terminals of the package are connected to a source measure unit, and an IV trace of the package is obtained.
- The series resistance is extracted from the IV trace.

$$\frac{I}{g_d} = \frac{nKT}{q} + Ir_s < g_d = \frac{dI}{dV}$$

n: Ideality factor

q: absolute value of electron charge

K: Boltzmann's constantT: absolute temperature

 τ_s : Series resistance

I: Current

References: D.K. Schroder, 2006; M.Shur, 1996, W.R. Runyan, 1975

Summary

- For the selected product
 - Cycling without dwell time did not show any degradation or failure
 - Cycling with dwell time showed no catastrophic failure, but showed gradual light output decrease due to multiple failure modes
 - Electrical parameter changes
 - Driver; LED; Circuit
 - Optical changes
 - Age-related color changes within package (reflectivity)
 - Cycles to failure has better correlation than time to failure with dwell time (and time-averaged temperature) at 95°C delta temperature cycling

Study #2

- Selected system LED Integral A-Lamp
 - Varying delta T and dwell time
 - Same T max
 - Same T min

T _{Ambient} =25°C, Dwell Time=2 hours, Ramp rate=5°C/min				
Sample	Lamp 4	Lamp 4	Lamp 4	Lamp 4
Min. T	60°C	50°C	40°C	30°C
Max. T	120°C	120°C	120°C	120°C
ΔΤ	60°C	70°C	80°C	90°C
Ramp rate	5°C/min	5°C/min	5°C/min	5°C/min

T _{Ambient} =25°C, Dwell Time=2 hours, Ramp rate=5°C/min				
Sample	Lamp 4	Lamp 4	Lamp 4	Lamp 4
Min. T	30°C	30°C	30°C	30°C
Max. T	90°C	100°C	110°C	120°C
ΔΤ	60°C	70°C	80°C	90°C
Ramp rate	5°C/min	5°C/min	5°C/min	5°C/min

Results: 2 hr dwell time (Same Tmax)

- Cycles to failure shows good relationship with delta T
 - Possible failure reason: Solder joint disintegration

Results: No dwell time (Same T max)

No dwell time case did not show any relationship as a function of delta T

Results: 2 hr dwell time (Same T min)

- With same T min the maximum and time averaged temperature will be lowest for D60 and highest for D90.
 - This a is more likely scenario in real life rather than same T max.
 - Time to gather data may be longer than same T max case

Summary

- Failure acceleration to predict system life
 - Looking for relationships between
 - cycle or time to failure and dwell time
 - cycle or time to failure and delta temperature

Additional experiment: Added vibration to the test setup

Vibration test setup

- IEC/MIL standard were referenced
 - X axis movement
 - Lamp resonance frequency

Light sensor
Displacement sensor

^{*}MIL-STD-202G, Electronic and electrical component parts

^{*}IEC 60068-2-6 standard , Environmental testing –Part 2, Vibration (sinusoidal)

Discussion

- Presently used industry standards for rapid cycle testing (2 min On / 2 min Off) has very little value for reliability testing
 - Faster cycles cause small temperature swings on system components.
 - Thus very little damage to system components
- Failure modes will differ significantly between products/brands
 - However, delta T and dwell time at maximum temperature may show good relationship with cycles/or time to failure
 - Thus, allowing for system lifetime prediction in applications

