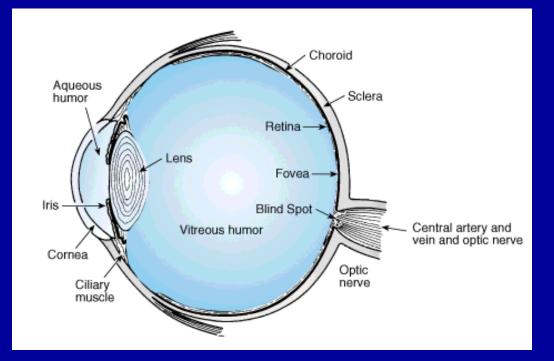
Physiology of Glare

John D. Bullough

Transportation Lighting Group, Lighting Research Center Rensselaer Polytechnic Institute

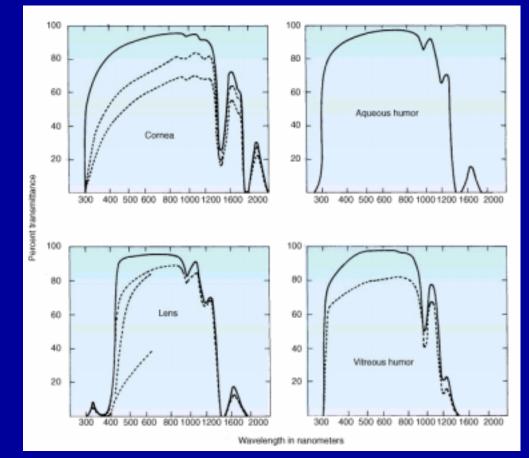
> TRB Human Factors Workshop January 12, 2003 Washington, DC



Outline

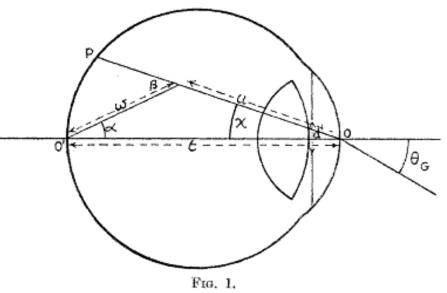
- Properties of the eye
- Scattering theory
- Induction
- Action spectra for glare disability and discomfort

The human eye


 Light travels through the cornea, aqueous, lens and vitreous before reaching the retina

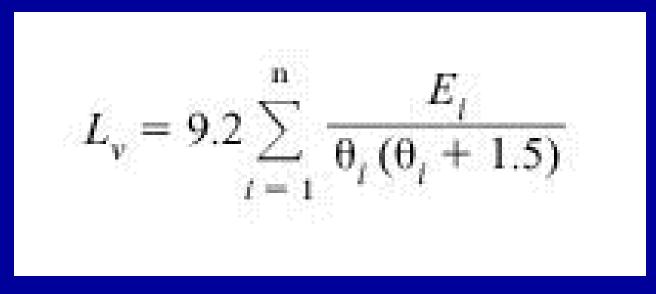
IESNA Lighting Handbook (2000)

Transmission of ocular media


- Media are not transparent
- Transmission reduces with age: half by age 50, one-third by age 60

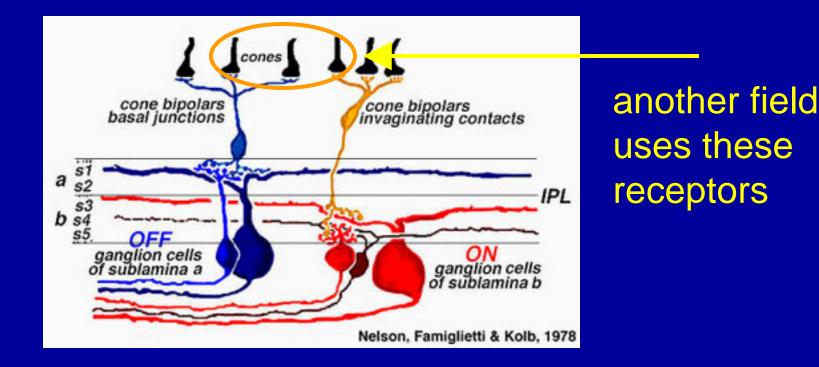
IESNA Lighting Handbook (2000)

Scattering


- Holladay (1926) noted that a glare source in the field of view had the same effect on foveal (central) vision as a uniform luminous veil
- Upon adjusting the light to the blind spot the effect remained, and he postulated that scattered light in the eye actually created this veil
- Stiles (1929) and colleagues (Stiles and Crawford, 1937) refined the theory including peripheral vision

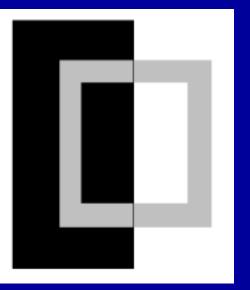
Stiles (1929)

Scatter (cont'd.)


• Fry (1954) further refined the work of Holladay (1926), Stiles (1929) and others to derive the familiar equation promulgated by the *IESNA Lighting Handbook* (2000):

IESNA Lighting Handbook (2000)

It's not just optics...

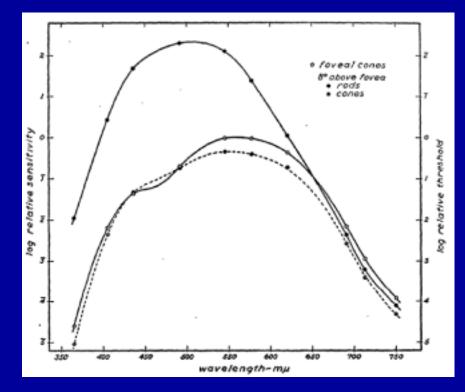

 Edges and contrasts are detected through receptive fields at the retinal level

http://webvision.med.utah.edu/

Induction

- Fry's (1954) formula breaks down when the glare is near the line of sight
- Induction is a neural interaction:

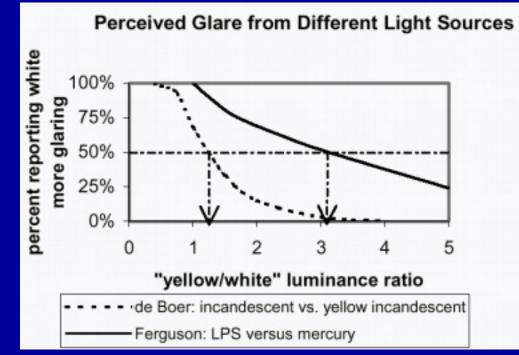
Boyce (1981)


»very large differences in field of view affect their visibility »the way the visual system "enhances" edges through receptive fields, contrast might be a hindrance in a "hypercontrast" situation exacerbating effects of scatter

Action spectrum?

- Holladay (1926) tested glare sources of differing colors (white, blue, red) and found a small (but not significant) difference between red and blue/white
- Holladay (1926) and Stiles (1929) assumed scatter in the eye to follow Rayleigh scattering
 ∝ 1/λ⁴ ("blue" scatters more than "red")
- Moon *et al.* (1943) demonstrated that is not the case - no wavelength dependence

Spectral response: Disability glare

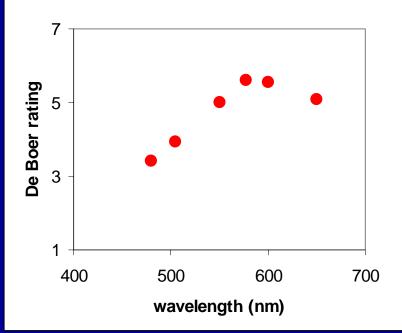

 No wavelength sensitivity, so the response mirrors the spectral sensitivity of the part of the retina in question, almost always the fovea (photopic)

Wald (1945)

Spectral response: Discomfort glare

• If discomfort glare also had a photopic response, glare sources of differing spectral content would be rated equally uncomfortable

vertical arrows would land at 1.0 if photopic!


Ferguson et al. (1953); De Boer (1955); Bullough and Rea (2001)

Discomfort glare

- Scotopic? No HID and halogen headlamps have similar scotopic (rod-stimulating) output but HIDs are consistently rated more uncomfortable (Flannagan, 1999)
- Short-wavelength-cone? Maybe (Fotios and Levermore, 1998) based on excess "brightness"
- Color channel? Maybe (Flannagan *et al.*, 1989)
- Maybe both?

Flannagan et al. (1989)

The nighttime driving environment

Potential glare sources abound

- oncoming headlights
- street lights
- traffic lights
- one's own dashboard
- Knowing physiological responses will help in improved design of the roadway visibility system

References

- Boyce PR. 1981. *Human Factors in Lighting.* New York: Macmillan.
- Bullough JD, Rea MS. 2001. Driving in snow: Effect of headlamp color at mesopic and photopic light levels (SAE paper 2001-01-0320). In Lighting Technology Developments for Automobiles, SP-1595. Warrendale, PA: Society of Automotive Engineers.
- De Boer JB, Van Heemskerck Veeckens JFT. 1955. Observations on discomfort glare in street lighting. *Proc. CIE*, Zurich.
- Ferguson HM, Reeves J, Stevens WR. 1953. A note on the relative discomfort glare from mercury, sodium and tungsten light sources. *GEC J*. (July).
- Flannagan MJ. Subjective and Objective Aspects of Headlamp Glare: Effects of Size and Spectral Power Distribution, UMTRI-99-36. Ann Arbor: University of Michigan.
- Flannagan MJ, Sivak M, Ensing M, Simmons CJ. 1989. Effect of Wavelength on Discomfort Glare from Monochromatic Sources, UMTRI-89-30. Ann Arbor: University of Michigan.
- Fotios SA, Levermore GJ. 1998. Chromatic effect on apparent brightness in interior spaces II. *Light. Res. Technol.* 30(3): 97-110.

References (cont'd.)

- Fry GA. 1954. A re-evaluation of the scattering theory of glare. *J. Illum. Eng. Soc.* 49(2): 98-102.
- Holladay LL. 1926. The fundamentals of glare and visibility. *J. Opt. Soc. Am.* 12(4): 271-319.
- Moon P, Spencer DE. 1943. The specification of foveal adaptation. *J. Opt. Soc. Am.* 33: 444-456.
- Nelson R, Famiglietti EV, Kolb H. 1978. Intracellular staining reveals different levels of stratification for on-and off-centre ganglion cells in cat retina. *J. Neurophysiol.* 41: 472-483.
- Rea MS (ed.). 2000. *IESNA Lighting Handbook: Reference and Application*, 9th ed. New York: Illuminating Engineering Society of North America.
- Stiles WS. 1929. The effect of glare on the brightness difference threshold. *Proc. Royal Soc. London B* 104(731): 322-351.
- Stiles WS, Crawford BH. 1937. The effect of a glaring light source on extrafoveal vision. *Proc. Royal Soc. London B* 122(827): 255-280.
- Wald G. 1945. Human vision and the spectrum. *Science* 101: 653-658.