Durability Testing for ENERGY STAR® Residential Light Fixtures

Roundtable Meeting
Dallas Trademart
June 23, 2003
Overview

- Project Goals
- Roundtable Summaries
- Methodology
 - Temperature Test
 - Stress Test
 - Voltage Test
- Results
- Conclusions/Recommendations
Project Goals

- Investigate possible causes of premature failures with ENERGY STAR® fixtures
- Develop test method to minimize premature failures, based on investigation
Roundtable Recommendations

- Elevated temperatures inside the fixtures are the most likely cause of premature failures
 - Focus on highly enclosed fixtures
- “Weed out” lesser quality components that are incompatible or do not meet ANSI specs by stress testing
- Measure impact of voltage variation
Temperature Test

- **Purpose**
 - Sample actual temperature conditions in operating fixtures
 - Develop test procedure for manufacturers to follow before ENERGY STAR approval
Temperature Test

- Sample selection
 - ENERGY STAR products
 - Recessed
 - Ceiling-mounted
 - Magnetic ballasts
 - Electronic ballasts
Temperature Test

- **Selection of fixture types**
 - Non-IC recessed and surface mounted fixtures

- **Sample quantity**
 - One from each fixture type and model

- **Testing location**
 - Ambient room temperature 25°C ±5°C
Temperature Test

- **Fixture characteristics**
 - Total samples = 29
 - Ceiling-mounted = 22
 - Magnetic ballasts = 12
 - Electronic ballasts = 10
 - Recessed = 7
 - All had electronic ballasts
Temperature Test Method

- Apparatus
 - Follow UL 1598, *UL Standard for Safety of Luminaires*
 - Thermocouple locations differ from ballast to ballast
Temperature Test Method

- Apparatus examples

Temperature Test Method

- Apparatus examples

© 2003 Rensselaer Polytechnic Institute. All rights reserved.
Temperature Test Method

- Thermocouple locations

![Diagram of thermocouple locations](image)

Caption: Courtesy: Robertson, Magnetek/Universal and Advance Transformer

© 2003 Rensselaer Polytechnic Institute. All rights reserved.
Temperature Test Method

- **Procedure**
 - Ballast manufacturer indicates maximum allowable temperature
 - If not cited, assume 65°C
 - Stabilize temperature for 7.5 hours minimum
Temperature Test Results

- Percentage exceeding allowable ballast operating case

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th><64°C</th>
<th>65-74°C</th>
<th>75-89°C</th>
<th>90°C+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling mounted fixture, magnetic ballast (n=12)</td>
<td>8%</td>
<td>8%</td>
<td>25%</td>
<td>58%</td>
</tr>
<tr>
<td>Ceiling mounted fixture, electronic ballast (n=10)</td>
<td>10%</td>
<td>40%</td>
<td>40%</td>
<td>10%</td>
</tr>
<tr>
<td>Recessed fixture, electronic ballast (n=7)</td>
<td>71%</td>
<td>14%</td>
<td>0%</td>
<td>14%</td>
</tr>
</tbody>
</table>
Temperature Test Results

- Ceiling mounted fixtures with electronic ballasts
Temperature Test Results

- Ceiling mounted fixtures with magnetic ballasts

![Graph showing ballast temperature results](image-url)
Temperature Test Results

- Recessed fixtures with electronic ballasts
Temperature Test Results

- As maximum allowable ballast operating case temperature becomes more strict, percentage of samples exceeding limit

<table>
<thead>
<tr>
<th></th>
<th>90°C+</th>
<th>75°C</th>
<th>65°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling mounted fixture, magnetic ballast</td>
<td>58%</td>
<td>83%</td>
<td>92%</td>
</tr>
<tr>
<td>Ceiling mounted fixture, electronic ballast</td>
<td>10%</td>
<td>50%</td>
<td>90%</td>
</tr>
<tr>
<td>Recessed fixture, electronic ballast</td>
<td>14%</td>
<td>14%</td>
<td>29%</td>
</tr>
</tbody>
</table>
Stress Test

- **Purpose**
 - Conduct a rapid-cycle test to stress the lamp/ballast system
 - Quickly identify any starting or operating characteristics of the ballast that may damage the lamps
 - Determine failures caused by substandard components or lamp/ballast incompatibility
Stress Test

- Sample selection
 - Wide wattage range
 - 13W CFL to high-wattage Circline® lamps
 - Not based on ANSI or IEC standards, price, nor potential quality indicator
Stress Test

- Fixture characteristics
 - Nine lamp/ballast products selected for test
 - Six samples of each product
Stress Test

- **Setup**
 - Remove lamps and ballasts from fixtures; place in racks in a base-up position
 - Regulate voltage to 120 V ±0.5%
 - Regulate temperature in lab to 25°C ±10°C
 - Lamps “seasoned” for 100 hours before test start
Stress Test

- **Procedure**
 - Rapid-cycle test of 5 minutes on/5 minutes off
 - Computer-controlled and monitored
 - Cycle operation until failure
 - Manually turn off lamps not failing by April 20, 2003
Stress Test Results

- Majority of products had at least 32,000 starts
- Two products had premature failure
 - Neither achieved 10,000 starts
Voltage Test

- Purpose
 - Measure impact of high and low supply voltage on life of typical ENERGY STAR fixtures
 - Concentrate efforts on constant over- or under-voltage conditions
Voltage Test

Sample selection

• Common lamp wattages recommended by ICF Consulting
 ▪ 13W twin-tube and double twin-tube lamps
 ▪ 30W Circline lamps
 ▪ 40W double-Circline lamps

• All products electronically ballasted

• Two examples in each category, six samples of each
Voltage Test

- Setup
 - Use 104 V and 130 V as residential extremes
 - Use 2 samples for under-voltage; 2 samples for over-voltage; 2 samples as control
Voltage Test

Procedure
- Continual operation at constant under- or over-voltage conditions
 - Constant power used to eliminate switching as potential failure cause
- Daily monitoring to note failures
 - Replace lamps as necessary to continue ballast tests
Voltage Test Results

- After eight weeks of constant operation, no failures occurred
 - Neither lamp nor ballast failure
- After an additional three weeks at greater voltage extremes (84 V and 156 V), still no failures occurred
Conclusions/recommendations

- Temperature test recommendation
 - Adopt LRC’s proposed test method based on pilot testing
 - Maximum allowable temperature and thermal probe location to be determined by ballast manufacturer
Conclusions/recommendations

- Temperature test recommendation
 - Documentation
 - Photographs of tested fixtures mounted in/on test apparatus
 - Ballast documentation from manufacturer for location and max. performance temperature
 - Temperature recorded at test start and after 7.5 hours of stabilization
Conclusions/recommendations

- **Stress test conclusion**
 - Studies inconclusive
 - Lamp/ballast incompatibility beyond ANSI compliance must be investigated

- **Stress test recommendation**
 - ANSI compliance as interim step
 - Further testing is warranted
Conclusions/recommendations

- Voltage test conclusion
 - Voltage alone does not appear to be a cause of premature failure; no requirements beyond ANSI standard line voltage ranges

- Voltage test recommendation
 - Since transient protection is already required by the ENERGY STAR specification, no additional requirements are necessary until test for interaction with other factors is conducted
Next Steps

- Further investigate mechanisms through which temperature may be involved in premature failure
- Determine acceptable target field failure rate/return rate for ENERGY STAR residential fixtures
Next Steps

- Test for interaction ("doe")
 - Temperature vs. voltage
 - Temperature vs. stress
 - Voltage vs. stress
 - Temperature vs. voltage vs. stress
Thank you.