Lighting Research Center
LRC Intranet Web mail Lighting Research Center
 

Press Releases


 


Back To Press Releases

For Immediate Release

Contact:   Rebekah Mullaney
Lighting Research Center
518.687.7118
mullar2@rpi.edu
  Newsroom Home
  Project Sheets
  In the News
  LRC Experts
  About Us
  Contact Us
Troy, N.Y. -  8/21/2012

Depending on How Much and How Long, Light from Self-Luminous Tablet Computers Can Affect Evening Melatonin, Delaying Sleep

New LRC research can aid in the development of circadian-friendly electronic devices

tablet demonstration photo; click for larger image

Study participants viewed the tablets without goggles, through orange-tinted goggles capable of filtering out radiation that can suppress melatonin, and through clear goggles fitted with blue LEDs to suppress melatonin.

A new study from the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute shows that a two-hour exposure to electronic devices with self-luminous “backlit” displays causes melatonin suppression, which might lead to delayed bedtimes, especially in teens.
 
The research team, led by Mariana Figueiro, associate professor at Rensselaer and director of the LRC’s Light and Health Program, tested the effects of self-luminous tablets on melatonin suppression. In order to simulate typical usage of these devices, 13 individuals used self-luminous tablets to read, play games, and watch movies. Results of the study, titled “Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression,” were recently published in the journal Applied Ergonomics.
 
“Our study shows that a two-hour exposure to light from self-luminous electronic displays can suppress melatonin by about 23%. Stimulating the human circadian system to this level may affect sleep in those using the devices prior to bedtime,” said Figueiro.
 
The actual melatonin suppression values after 60 minutes were very similar to those estimated using a predictive model of human circadian phototransduction for one-hour light exposures. “Based on these results, display manufacturers can use our model to determine how their products could affect circadian system regulation,” said Figueiro.
 
The results of this study, together with the LRC predictive model of human circadian phototransduction, could urge manufacturers to design more “circadian-friendly” electronic devices that could either increase or decrease circadian stimulation depending on the time of day—reducing circadian stimulation in the evening for a better night’s sleep, and increasing in the morning to encourage alertness. In the future, manufacturers might be able to use data and predictive models to design tablets for tailored daytime light exposures that minimize symptoms of seasonal affective disorder, and sleep disorders in seniors. Individuals would be able to receive light treatments while playing games or watching movies, making light therapy much more enjoyable than just sitting in front of a light box.    
 
Along with Figueiro, co-authors of the study are LRC Director and Professor Mark S. Rea, LRC Research Specialist Brittany Wood, and LRC Research Nurse Barbara Plitnick.
 
Melatonin is a hormone produced by the pineal gland at night and under conditions of darkness in both diurnal and nocturnal species. It is a “timing messenger,” signaling nighttime information throughout the body. Exposure to light at night, especially short-wavelength light, can slow or even cease nocturnal melatonin production. Suppression of melatonin by light at night resulting in circadian disruption has been implicated in sleep disturbances, increased risk for diabetes and obesity, as well as increased risk for more serious diseases, such as breast cancer, if circadian disruption occurs for many consecutive years, such as in nightshift workers.
 
“Technology developments have led to bigger and brighter televisions, computer screens, and cell phones,” said Wood, who used the study as the basis for her master’s thesis. “To produce white light, these electronic devices must emit light at short wavelengths, which makes them potential sources for suppressing or delaying the onset of melatonin in the evening, reducing sleep duration and disrupting sleep. This is particularly worrisome in populations such as young adults and adolescents, who already tend to be night owls.”  
 
In the study, the participants were divided into three groups. The first group viewed their tablets through a pair of clear goggles fitted with 470-nm (blue) light from light emitting diodes (LEDs). This was a “true positive” condition because the blue light is known to be a strong stimulus for suppressing melatonin. The second group viewed their tablets through orange-tinted glasses, capable of filtering out the short-wavelength radiation that can suppress melatonin; this was the “dark control” condition. The third group did not wear glasses or goggles. Each tablet was set to full brightness.
 
In order to accurately record personal light exposures during the experiment, each subject wore a Dimesimeter close to the eye. The Dimesimeter is a small calibrated light meter device developed by the LRC that continuously records circadian light and activity levels. Last year, international magazine The Scientist named the LRC’s Dimesimeter as one of the “Top 10 Innovations of 2011.”
 
The research team established that duration of exposure and the distance between the eye and the display, which determines the amount of light reaching the back of the eye, affects melatonin levels. Melatonin suppression after one hour exposure to the tablet was not significantly affected. However, after a two-hour exposure there was significant suppression.
 
The type of task being performed on the tablets also determines how much light is delivered to the cornea and, therefore, the impact on evening melatonin levels. As shown by the team’s Dimesimeter measurements, the range of photopic illuminance levels at the cornea from the tablets alone varied from 5 lux, which is not likely to affect melatonin, to over 50 lux, which would result in measurable melatonin suppression after a two-hour exposure. Therefore, before any generalizations can be made, it is important to measure how much light one is receiving from these self-luminous devices.
 
Until manufacturers develop more “circadian-friendly” electronic devices that increase or decrease light exposure based on time of day, Figueiro has several recommendations to reduce their effects on sleep. “We recommended dimming these devices at night as much as possible in order to minimize melatonin suppression, and limiting the amount of time spent using these devices prior to bedtime.”
 
The study was funded by Sharp Laboratories of America.

About the Lighting Research Center
The Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is the world's leading center for lighting research and education. Established in 1988 by the New York State Energy Research and Development Authority (NYSERDA), the LRC has been pioneering research in energy and the environment, light and health, transportation lighting and safety, and solid-state lighting for more than 25 years.
In 1990, the LRC became the first university research center to offer graduate degrees in lighting and today the LRC offers both a M.S. in lighting as well as a Ph.D. to educate future leaders in lighting. Internationally recognized as the preeminent source for objective information on all aspects of lighting technology and application, LRC researchers conduct independent, third-party testing of lighting products in the LRC's state of the art photometric laboratories, the only university lighting laboratories accredited by the National Voluntary Laboratory Accreditation Program (NVLAP Lab Code: 200480-0). LRC researchers are continuously working to develop new and better ways to measure the value of light and lighting systems, such as the effect of light on human health, and the effect of light on plant physiology.
The LRC believes that by accurately matching the lighting technology and application to the needs of the end user, it is possible to design lighting that benefits both society and the environment.

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nation's oldest technological university. The university offers bachelor's, master's, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.