An accelerated test method for estimating LED system life

N. Narendran, PhD
Professor, Director of Research
Lighting Research Center
Rensselaer Polytechnic Institute
October 2014

narenn2@rpi.edu
Background

- Why LED system life?
 - How often to change the light bulb
 - Life cycle cost analysis

- Users buying a lighting system expects it to perform and last the same in all applications
Background

- **LED system life**
 - Presently, LED lighting product life is rated based on LED lumen maintenance (LM80/TM21)

- **A lighting system has many components**
 - Failure of any component can cause system failure

- **Therefore, whole system has be tested to obtain reasonable life estimate**
Background

- **IESNA LM84-14 standard:**
 - First attempt towards developing a system life test method
 - Test method is based on continuous operation.

- **In applications the lighting systems are turned on and off**
 - Typical use pattern:
 - A - Office: 12 hrs on, 12 hrs off
 - B - Home: 4 hrs on, 4 hrs off
Background

- Power cycling can cause component/system failure
 - Dynamic stress
 - LRC study (2013 – 2014)
 - COB LEDs
 - Testing conditions:
 - 700 mA; Tj = 150°C; Continuous vs. cycling (4 hours on, 2 hours off)
 - Results:
 - Catastrophic failures were only discovered in cycling test

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Catastrophic failure (cycling test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4 out of 5</td>
</tr>
<tr>
<td>C</td>
<td>4 out of 5</td>
</tr>
</tbody>
</table>
Background

- The electronic industry has several rapid cycle test methods for failure testing
 - Example:
 - IEC 60068-2-14
 - Strife

- Some manufacturers have adopted similar methods for LED reliability testing
 - Test for 1000 cycles
 - Usually a pass/fail test (helps to identify early failures)

IEC 60068-2-14 Method

Strife method

STRIFE method is the most destructive among test method.
Study Objective

- None of the test procedures presently available are designed to project system life based on the environment temperature and the use pattern (on-off).

- Objective - To develop an accelerated test method that can predict failure of LED system based on factors such as:
 - Environment temperature (Tpin)
 - On-off cycling.
Initial studies

- To determine T_{pin} of the LED lamp when placed inside a luminaire
 - 40W replacement lamps
 - Max $T_{pin} = 98^\circ C$; Delta $T = 75^\circ C$
 - 60W replacement lamps
 - Max $T_{pin} = 118^\circ C$; Delta $T = 95^\circ C$
 - $T_j \sim 20^\circ C$ higher than T_{pin}

- LRC preliminary studies identified the following acceleration parameters:
 - ΔT, Max. T_j, Ramp rate, Dwell time
Failure Testing

- Some standards have very fast cycling of LED products to test for failures.
 - Very small delta T
 - May not cause damage

- Generally there are two types of failures:
 - Parametric
 - Lumen depreciation or color shift
 - Catastrophic
 - Ceases to produce light
Study 1

- **Objective:** To understand failure modes and their relationship to test parameters:
 - Delta T (70, 95 C);
 - Dwell time = 1 to 9 hrs

- **Over 14,000 hours of test time**

- **Results:**
 - Cycling without dwell time did not show any degradation or failure
 - Delta 70, no failure
 - catastrophic or lumen depreciation
 - Delta 95, no catastrophic failure but lumen depreciation

System tested
G25 LED lamp
(40W incandescent replacement)
Results: Delta 95°C study

Light output pattern
Results: Delta 95°C study

- No catastrophic failures but lumen depreciation was observed
- Failure assumption:
 - 70% light level
- Cycles to failure
 - Correlated well with
 - time averaged temperature

Multiple degradation mechanisms

- Slope 1 = -0.05%/day
- Slope 2 = -0.52%/day
- Slope 3 = -0.13%/day

Cycles to failure vs. time averaged temperature

\[y = -4949 \ln(x) + 23035 \]
\[R^2 = 0.9549 \]
Analysis

- Lumen depreciation was due to electrical and optical degradations
 - 40% light loss due to electrical
 - 13% light loss due to optical

<table>
<thead>
<tr>
<th></th>
<th>New sample</th>
<th>D95 Aged sample</th>
<th>D95 aged sample with original current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (mA)</td>
<td>193</td>
<td>117</td>
<td>193</td>
</tr>
<tr>
<td>Light output</td>
<td>100%</td>
<td>47%</td>
<td>87%</td>
</tr>
</tbody>
</table>

© 2014 Rensselaer Polytechnic Institute. All rights reserved.
Data Extrapolation

- Extrapolating the 6000 hr data can lead to erroneous results
 - Projected life = 25,000 hrs
 - Actual life = 8,000 hrs
Study 1 Summary

- For the selected product (40W incandescent G25 replacement)
 - Cycling without dwell time did not show any degradation or failure
 - Cycling with dwell time showed no catastrophic failure, but showed lumen depreciation due to multiple failure modes
 - Electrical / Optical (Electrical degradation much greater than optical)
 - Cycles to failure correlated well with time-averaged T
 - Need to be careful when extrapolating system data
 - multiple degradation mechanisms
STUDY 2
Study 2

- **Objective:** To understand the effect of different delta temperate and dwell times on failure time
 - Lamp used: A 60W equivalent LED lamp

<table>
<thead>
<tr>
<th>ΔT</th>
<th>60°C</th>
<th>70°C</th>
<th>80°C</th>
<th>90°C</th>
</tr>
</thead>
</table>

© 2014 Rensselaer Polytechnic Institute. All rights reserved.
Study 2 Results

- For the system tested
 - Delta temperature increase results in shorter TTF
 - Catastrophic failure
 - Dwell time increase
 - Results in longer time to failure at delta T 95 C
 - Data is still being collected at other delta T temperatures
Results

- For the system tested, time to failure has a good correlation with time averaged temperature.
 - Dominant failure mode: Solder joint failure

![Graph showing the correlation between time to failure and average temperature](image.png)

\[y = 3.0325x^2 - 721.68x + 44932 \]

\[R^2 = 0.83 \]
Study 2 - Summary

- Failure acceleration to predict system life
 - Higher Delta T, shorter time to failure
 - Dwell time also influences time to failure

- For the system tested, time to failure has a good correlation with time averaged temperature
Final Remarks

- Failures can be parametric (lumen depreciation) or catastrophic (complete failure)

- Life testing of LED systems must include on-off cycling
 - Very fast cycling may not show failure
 - Not a suitable test for stressing system

- Over accelerated life testing may result in additional failure modes

- In an LED system lumen depreciation can be due to several factors (Electrical and optical)
 - Simple function extrapolation for systems may lead to erroneous results

- Failure acceleration using delta T and dwell time is showing promise in predicting the failure of LED systems under different operating conditions
 - Time average temperature correlates well with time to failure
 - However, more products need to be tested to validate test procedure
Acknowledgements

- Organizers of 9th SSL Annex Expert Meeting
- ASSIST program sponsors
- Lighting Research Center Staff
 - Yi Wei Liu
 - Martin Overington
 - Yiting Zhu
 - Howard Ohlhous
 - Antonio Capo
 - Jenny Taylor